Iron chelators can protect against oxidative stress through ferryl heme reduction.

نویسندگان

  • Brandon J Reeder
  • Robert C Hider
  • Michael T Wilson
چکیده

Iron chelators such as desferrioxamine have been shown to ameliorate oxidative damage in vivo. The mechanism of this therapeutic action under non-iron-overload conditions is, however, complex, as desferrioxamine has properties that can impact on oxidative damage independent of its capacity to act as an iron chelator. Desferrioxamine can act as a reducing agent to remove cytotoxic ferryl myoglobin and hemoglobin and has recently been shown to prevent the formation of a highly cytotoxic heme-to-protein cross-linked derivative of myoglobin. In this study we have examined the effects of a wide range of iron chelators, including the clinically used hydroxypyridinone CP20 (deferriprone), on the stability of ferryl myoglobin and on the formation of heme-to-protein cross-linking. We show that all hydroxypyridinones, as well as many other iron chelators, are efficient reducing agents of ferryl myoglobin. These compounds are also effective at preventing the formation of cytotoxic derivatives of myoglobin such as heme-to-protein cross-linking. These results show that the use of iron chelators in vivo may ameliorate oxidative damage under conditions of non-iron overload by at least two mechanisms. The antioxidant effects of chelators in vivo cannot, therefore, be attributed solely to iron chelation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acellular hemoglobin-mediated oxidative stress toward endothelium: a role for ferryl iron.

We tested the hypothesis that chemical modifications used to produce stable, oxygen-carrying, Hb-based blood substitutes can induce cytotoxicity in endothelial cells in culture because of altered redox activity. We examined the interaction of hydrogen peroxide with nonmodified hemoglobin (HbA0) and two chemically modified hemoglobins, α-cross-linked hemoglobin (α-DBBF) and its polymerized form ...

متن کامل

Nature of the ferryl heme in compounds I and II.

Heme enzymes are ubiquitous in biology and catalyze a vast array of biological redox processes. The formation of high valent ferryl intermediates of the heme iron (known as Compounds I and Compound II) is implicated for a number of catalytic heme enzymes, but these species are formed only transiently and thus have proved somewhat elusive. In consequence, there has been conflicting evidence as t...

متن کامل

Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine β145.

AIM Hemoglobin (Hb) becomes toxic when released from the erythrocyte. The acute phase protein haptoglobin (Hp) binds avidly to Hb and decreases oxidative damage to Hb itself and to the surrounding proteins and lipids. However, the molecular mechanism underpinning Hp protection is to date unclear. The aim of this study was to use electron paramagnetic resonance (EPR) spectroscopy, stopped flow o...

متن کامل

Iron chelation protects the retinal pigment epithelial cell line ARPE-19 against cell death triggered by diverse stimuli.

PURPOSE Cell death can be induced by exogenous reactive oxygen species (ROS). Endogenous ROS can also play a role in cell death triggered by agents that are not themselves ROS. One of the most potent ROS-generating systems is the iron-catalyzed Fenton reaction. Herein, the authors tested whether iron plays an important role in cell death induced by diverse stimuli in retinal pigment epithelial ...

متن کامل

FORUM ORIGINAL RESEARCH COMMUNICATION Haptoglobin Binding Stabilizes Hemoglobin Ferryl Iron and the Globin Radical on Tyrosine b145

Aim: Hemoglobin (Hb) becomes toxic when released from the erythrocyte. The acute phase protein haptoglobin (Hp) binds avidly to Hb and decreases oxidative damage to Hb itself and to the surrounding proteins and lipids. However, the molecular mechanism underpinning Hp protection is to date unclear. The aim of this study was to use electron paramagnetic resonance (EPR) spectroscopy, stopped flow ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Free radical biology & medicine

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2008